
Automatic Test Grading Using Image Processing

and Machine Learning Techniques

Andries Petrus Smit
18183085

Report submitted in partial fulfilment of the requirements of the module

Project (E) 448 for the degree Baccalaureus in Engineering in the

Department of Electrical and Electronic Engineering at the University of

Stellenbosch

STUDY LEADER: Prof. J.A. du Preez

DATE: October 2017

Acknowledgements

I would like to acknowledge my study leader, Prof. J.A. du Preez, my family and the engineering

class of 2017 for their kind contribution to this project. I would especially like to give thanks to

the Applied Mathematics Department of Stellenbosch University for providing the opportunity

and data needed to complete this project.

i

Plagiaatverklaring / Plagiarism Declaration

1 Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele

eiendom van ander persone asof dit jou eie werk is.

Plagiarism is the use of ideas, material and other intellectual property of another’s

work and to present is as my own.

2 Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van

diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

3 Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

4 Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die

internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks

sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

5 Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui,

my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik

ingehandig het vir bepunting in hierdie module/werkstuk of ‘n ander module/werkstuk

nie.

I declare that the work contained in this assignment, except where otherwise stated, is

my original work and that I have not previously (in its entirety or in part) submitted it

for grading in this module/assignment or another module/assignment.

Studentenommer / Student number Handtekening / Signature

Voorletters en van / Initials and surname Datum / Date

ii

Abstract

The aim of this research project is to develop software which automatically grades tests, which

are written by students on a special template. The standard method used in these Optical Mark

Recognition (OMR) software, is to allow a learner to specify answers by colouring in bubble

grids. To correct a mistake, the incorrect answer’s bubbles must first be erased. This is time

consuming and increases the probability that a learner might colour in the bubbles incorrectly.

This research project tries to solve this problem by implementing additional software that eases

the use of such a template. Using computer vision and two machine learning techniques, namely

Neural Networks (NN) and Probabilistic Graphical Models (PGM), a student can now erase

answers by crossing bubbles out and write answers using characters. The software developed

in this project thus improves ease of use, compared to other OMR software, while maintaining

a high level of grading accuracy.

iii

Uittreksel

Die doel van hierdie navorsingsprojek is om sagteware te ontwikkel wat automaties toetse, wat

deur studente geskryf is, na te sien. Die standaardmetode wat in hierdie Optiesemerk-leser

sagteware gebruik word, is om van inkleur roosterborrels gebruik te maak. Om ’n fout wat die

student gemaak het te korrigeer, moet die ou ingekleurde borrels eers uitgevee word. Hierdie

proses is tydrowend en verhoog die kanse dat ’n student die borrels verkeerd invul. Hierdie

navorsingsprojek poog om dié probleem op te los deur addisionele sagteware te implementeer,

wat die gebruik van so ’n templaat vergemaklik. Met behulp van rekenaarvisie en twee masjien-

leertegnieke, naamlik Neurale Netwerke en Probabilistiese Grafiese Modelle, kan ’n student nou

vrae beantwoord deur ingekleurde borrels uit te vee, asook antwoorde in karakters te skryf.

Die sagteware wat in die projek ontwikkel word, maak die tipe toetse makliker om te gebruik,

terwyl ’n hoë nasien akuraatheid in toetsresultate verkry word.

iv

Contents

Abstract iii

Uittreksel iv

List of Figures x

List of Tables xi

Nomenclature xiv

1 Introduction 1

1.1 Problem background . 1

1.2 Problem statement . 2

1.3 Project scope and assumptions . 2

1.4 Project objectives . 3

1.5 Research methodology . 4

1.6 Graphical overview of system . 5

2 Literature study 6

2.1 Existing Optical Marker Recognition techniques 6

2.1.1 Standard Optical Marker Recognition systems 6

2.1.1.1 Finding the template . 8

2.1.1.2 Processing a bubble . 8

2.2 Optical character recognition . 9

2.2.1 Probabilistic approach . 10

2.3 Conclusion: System requirements . 10

v

CONTENTS

3 Image processing 11

3.1 Orientation detection . 11

3.1.1 Initial filtering and orientation detection 12

3.1.2 Radon transform . 14

3.1.3 Finding the template . 15

3.2 Bubble detection and processing . 16

3.3 Data processing and grading . 17

3.4 Conclusion . 18

4 Machine learning approach 19

4.1 Character recognition using a neural network 19

4.1.1 Preprocessing and creating digit images 20

4.1.2 Classification of digits . 23

4.1.2.1 The Neural Network basics 24

4.1.2.2 The artificial neuron . 24

4.1.2.3 Generating an output from the network 25

4.1.2.4 Deep Convolutional Neural Network 25

4.1.2.5 Training of the neural network 26

4.2 Probabilistic Graphical Models . 26

4.2.1 Overview of the system . 27

4.2.2 Estimating the intended digit . 27

4.2.3 Estimating the student answer . 28

4.2.4 Estimating the student number 29

4.2.5 Training of a Probabilistic Graphical Model 30

4.3 Conclusion . 30

5 Analysis of results 31

5.1 Results of 25 test cases . 31

5.1.1 Basic system . 33

5.1.1.1 Clash list . 33

5.1.1.2 Incorrect automatic graded results 34

5.1.2 Complete system . 34

5.1.2.1 Clash list . 34

5.1.2.2 Incorrect automatic graded results 35

vi

CONTENTS

5.1.3 Analysis of results . 35

5.2 Grading of tutorial tests . 36

5.2.1 Marking statistics . 36

5.2.2 Clash list . 36

5.2.3 Incorrect automatic graded results 36

5.2.4 Conclusion . 36

6 Summary and conclusions 39

6.1 Project summary . 39

6.2 How this final year project benefits society 39

6.3 What the student learned . 40

6.4 Future improvements . 40

6.5 Summary and conclusions . 40

References 41

A Project plan 42

B Outcome compliance 44

C Mathematical and graphical description of system 47

C.1 High-level overview . 47

C.2 The student answer . 48

C.3 The intended digit . 49

C.4 The student number . 51

D Systems diagrams and software 54

D.1 Software . 54

D.2 Interface . 54

D.3 Templates . 56

E Validation and results 60

E.1 All tutorial results . 60

E.1.1 Overview . 60

E.2 Deep Convolutional Neural Network results 63

vii

CONTENTS

E.2.1 Trained on generated database . 63

E.2.1.1 Accuracy of network . 63

E.2.1.2 Conclusion on accuracy 63

E.2.2 Trained on MNIST database . 64

E.2.2.1 Accuracy of network . 64

E.2.2.2 Conclusion on accuracy 64

E.2.3 Trained on mixed database . 64

E.2.3.1 Accuracy of network . 64

E.2.3.2 Conclusion on accuracy 65

viii

List of Figures

1.1 Automatic test grading template layout. 3

1.2 Graphical overview of the system. 5

2.1 Standard OMR template with reference blocks on the left (VijayaForm,

2017). 7

2.2 Contours found around corrected answer. 9

3.1 Four markers found from applying Radon transforms. 12

3.2 Reduced contours in image. 13

3.3 Radon transform applied on function f , adapted from Edoras (2017). . . 14

3.4 Result in rotation after applying radon transform. 15

3.5 Detection of contours in image and estimation of bubble locations. 16

4.1 Image showing found contours for boxes used for character recognition. . 20

4.2 The box contour found is normalized to form a rectangular shape. 21

4.3 Box after black lines are filtered out, found using a Radon transform. . . 21

4.4 Custom segmentation algorithm used to find the main cluster in the re-

maining image. 22

4.5 Area block drawn around the segment most probable to belong to the digit. 22

4.6 Final image after translation and normalization are applied. 22

4.7 Example image used as input to the neural network, from Tensorflow (2017). 23

4.8 Basic structure of a neural network, from Karpathy (2017). 24

4.9 Graphical setup for determining the intended digit written by a student. 27

4.10 Graphical setup of student answer. 28

4.11 Graphical setup of student number. 29

ix

LIST OF FIGURES

5.1 Image showing answer with crossed-out answers that the system misinter-

preted. 33

5.2 Filled-in answer with only character information. 34

5.3 Crossed-out character that confused the grading system. 35

5.4 Incorrectly identified answer as 95. 38

A.1 Project plan for the final year project. 43

C.1 System overview. 47

C.2 Graphical setup of determining student answer. 48

C.3 Column with evidence that gets considered for the calculation of an in-

tended digit. 49

C.4 Graphical setup of determining intended digit. 50

C.5 Graphical setup of determining student number. 52

D.1 Main interface of the test grader. 55

D.2 Clash list interface of the test grader. 55

D.3 Original template focussed on numbered answered questions. 57

D.4 Template allowing for numbered and multiple choice answers. 58

D.5 Template focussed solely on multiple choice type questions. 59

x

List of Tables

5.1 Description of 25 evaluation tests. 32

5.2 Description and quantity of clashes in the different categories. 37

B.1 Description of exit level outcomes and how this project adherse to them. 45

B.2 Description of exit level outcomes and how this project adherse to them. 46

E.1 Description of tutorial results. 61

E.2 Description of tutorial results. 62

E.3 Test results for neural network trained on generated data. 63

E.4 Test results for neural network trained on MNIST dataset. 64

E.5 Test results for neural network trained on combined data. 65

xi

Nomenclature

Abbreviations

CT Computed tomography

DAG Directed acyclic graph

DCNN Deep convolutional neural network

GAN Generative Adversarial Networks

MNIST Modified national institute of standards and technology

NN Neural network

OCR Optical character recognition

OMR Optical mark recognition

PGM Probabilistic graphical model

Symbols

δ Dirac delta function maps any function to its value at zero

σ(z) Normalization function in a neural network

θ Angle of summation line in the Radon transform

A Random variable representing an answer for a specific ques-

tion

xii

Nomenclature

b Bias variable added to allow a neuron to have an offset in

its output

BEi Random variable representing bubble evidence obtained form

image processing of the digit at index i

BIi Random variable representing the bubbles the student to

colour in for digit i

c Number of inputs to a neuron

CEi Random variable representing a character evidence obtained

form image processing at and arbitrary index i

Di Random variable representing a digit in column i for a an-

swer or student number block

DE Random variables representing a digit evidence obtained

form image processing

DI Random variables all the digit intended by the student

f(x, y) Two dimensional function that a Radon transform is applied

over

G(r, θ) Radon transform defined over r and θ

Gθ(r) The Randon transform’s values at a given θ

I Random variable representing the test image

k Index value for a specific input neuron

n Number of bubbles of template sheet

p(i) Probability of digit at index i

r Length of perpendicular offset of the line in a Radon trans-

form

xiii

Nomenclature

S Random variable representing the possible student number

Sn Random variable representing the sign of a specific answer

wi Weight value at index i

x Horizontal coordinate value in two dimensional plane

xi Input value at index i

y Vertical coordinate value in two dimensional plane

z Weighted sum of a neuron’s inputs and internal variables

zk Weighted sum of a neuron’s inputs and internal variables at

index k in the specific layer

xiv

Chapter 1

Introduction

As modern technology and machine learning techniques advances, it is important for the

educational sector to continuously advance in their learning environment. This allows for

an ever improving learning experience in and outside the classroom.

1.1 Problem background

In the recent years the Applied Mathematics Department of Stellenbosch Engineering,

started observing a decrease in accuracy in the grading of tutorial tests done by teaching

assistants and demies. Students complained on a regular basis about correct answers

being marked incorrectly or even that their answers were totally ignored. Furthermore,

the assistants took a long time to grade these tests with time and financial implications.

To address this problem, the Applied Mathematics department proposed to automate

the process of grading the tutorial tests.

The head of the department wanted a system that can analyse and grade tests written

on a specific template. These answer sheets are handed out to the students to fill in their

respective answers. The answer sheets are then scanned to create a digital copy. The

system is tasked with automatically grading all these digital copies and transferring the

graded results to a database.

The department has tried to use a basic version of this type of system in the past.

Such a system only really becomes useful to the department if it can grade decimal valued

answers instead of only being able to grade multiple choice answers. Thus a template

needs to be designed that allows students to answer with decimal valued answers. Another

1

1.2 Problem statement

factor to consider is filling in those values must still be relatively easy. Therefore students

need to have the freedom of quickly crossing out an answer instead of erasing it each time.

In this research project the department sends weekly scanned answer sheets, which need

to be graded and the results returned to them. The feedback from these weekly tutorial

tests then acts as validation tests for the system. These tests are done in parallel with

the development and expansion of the test grading software. For these reasons an agile

development methodology is used to develop the software.

1.2 Problem statement

Given the problem background and stakeholders discussed in the previous section the

problem to be solved can be formulated as follows:

Develop and implement an automatic test grading system that will increase marking
accuracy and decrease marking time on the grading of Applied Mathematics tutorial
tests written by students.

1.3 Project scope and assumptions

Initial discussions with the department revealed that a specific template can be used.

This template allows the image processing software to more accurately determine what

the student’s intended answer is. The template consists of bubbles that can be filled in

as well as blocks for handwritten digits, as shown in Figure 1.1. The focus of this project

lies on processing the scanned answer sheet written on the specific template. To use the

template the student must fill in his/her student number and question answers in the

designated character blocks. They are also required to fill in the bubble underneath each

digit, corresponding to that specific digit. Additionally, a bubble next to each question

is provided if a negative sign is required.

Any additional assumptions are stated in the appropriate section throughout this

project.

2

1.4 Project objectives

Stellenbosch University: Applied Mathematics B154 Test /. /20 . . .

Surname : .

Enter your student number, both as numbers and
by filling in the ovals below the student number.

Give your answer for each question, both as
numbers and by filling in the corresponding oval
below each box.

Use only pen to colour the ovals.

. .
Student’s signature

US Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Question 1:

(a) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

(b) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Question 2:

(a) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

(b) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Figure 1.1: Automatic test grading template layout.

1.4 Project objectives

The problem as stated in Section 1.2, is addressed by pursuing the following objectives:

1. Develop a software application to allow a user to grade a large number (approxi-

mately 1000) scanned student tests automatically.

2. The software should provide precise and useful feedback. In order to achieve this,

every graded result will also include feedback on what questions the student an-

swered incorrectly.

3. Upgrade the software to allow students to cross out answers instead of having to

erase them.

3

1.5 Research methodology

4. Perform a weekly validation experiment with the software, by grading tutorial test

for the department. The results are then used as the students’ grades for that test.

5. Use an agile development methodology to improve the software in parallel with the

grading of weekly tests.

6. Add additional software, using machine learning, to improve the accuracy of the

system in grading these tests.

7. Add additional software that allows students to specify their student number only

using characters, thereby simplifying the use of the template.

The objectives are covered in separated chapters in this report. Note that each objective

(1 to 8) build on the objectives previously listed.

1.5 Research methodology

An agile development methodology is used to complete the objectives listed in Section

1.4. The methodology consists of six different phases:

1. Identify a new feature or update that needs to be implemented into the software

package.

2. Perform a study on existing methods to implement this new software.

3. Implement and integrate the new software with the current knowledge of the solu-

tion.

4. Test the software and observe if it’s performance is satisfactory.

5. If the software is not working as planned, revisit steps 2 to 4 until the new software

is working.

6. Use version control, in this case Git, to save the latest version of the software.

The structure and graphical overview of the software is presented next.

4

1.6 Graphical overview of system

1.6 Graphical overview of system

The process of writing an answer down on a paper can be represented using 6 informa-

tion nodes. These nodes are illustrated in Figure 1.2. The unnamed blocks indicate that

information processing occurs in these steps. The student has certain information he/she

wants to portray on the paper, namely the 4 answers and student number he/she wants

to write down. Thus those 5 nodes give rise to the image, representing the last node.

These nodes have to be represented in a probabilistic manner as the process of writing

answers down and scanning the test sheet, may produce a different image every time a

test is written, even though the same answers are intended. Thus the system is funda-

mentally tasked with inferring the probability of each answer and the student’s number

given the particular image as evidence. This is done by processing the image evidence

to produce and estimate the intended answers. These processes are described in later

sections. In the next section a literature study on current systems is given. For a more

detailed mathematical overview of the system, refer to Appendix C.

Figure 1.2: Graphical overview of the system.

5

Chapter 2

Literature study

In the previous chapter the problem statement and objectives of this project was laid out.

Further, a brief system overview was provided. This chapter will provide information on

already existing Optical Mark Recognition (OMR) systems and the techniques they use

for conducting image processing. Research on additional machine learning approaches

used in character recognition and probabilistic modelling is also given.

2.1 Existing Optical Marker Recognition techniques

An OMR system is software that is used to extracted handwritten information from a

filled-in form. Each system normally has a specific template that it can extract infor-

mation from. An example template is shown in Figure 2.1. These systems are generally

used when fast and accurate grading of tests are required. The black boxes in the figure

are used to locate the template. The main drawback of these systems is that information

can only be portrayed in a limited manner, due to the bubbles. On an OMR template

there is a grid of bubbles that allows a user to choose between different options to answer.

OMR systems are thus excellent for the grading of multiple choice type questions.

2.1.1 Standard Optical Marker Recognition systems

As can be seen in Figure 2.1, there is normally specific reference blocks on an OMR

template. These blocks are included to allow the computer vision and image processing

6

2.1 Existing Optical Marker Recognition techniques

Figure 2.1: Standard OMR template with reference blocks on the left (VijayaForm, 2017).

7

2.1 Existing Optical Marker Recognition techniques

algorithms to find the orientation of the image more easily. Other templates include lines

that can be used to locate the template.

In an OMR system there are normally two phases in the grading of a test (Ivetic &

Dragan, 2003). The first step is to determine the grid locations where the answers are

located in the image. In this process the system finds the orientation of the template in

the image and therefore can approximate the locations of the bubbles. Normally, some

preprocessing on a blank template is done beforehand to aid in locating the bubbles.

Once the bubbles are found, their estimated locations gets stored. The second step is

then to estimate the value of each bubble and use these values as the estimated answers.

These steps are described in more detail next.

2.1.1.1 Finding the template

The first process performed by OMR software is to locate a template grid inside the test

image. This step is necessary for the software to identify which bubbles corresponds with

each answer. One method of locating the template is identifying lines in the template.

The border normally contains long lines that can be extracted using a Hough transform

(Patel & Prajapati, 2003). A Hough transform is used to locate instances of an imper-

fect object within a certain shape range. A specific form of a Hough transform can be

implemented to detect lines. This form is called a Radon transform (MathWorks, 2017).

A Radon transform provides a way of representing an image as a summation of different

line integrations.

Once at least two line references on a page have been found, the template orientation

can be determined. Those two lines are then used to find two reference points on a page.

These points allow the system to estimate the locations of every bubble on the template

sheet. In the next section a method to process these bubble is described.

2.1.1.2 Processing a bubble

Once an estimated location for each bubble is known, the next step for an OMR system

is to process these bubbles. A basic image processing method to classify bubbles is by

adding the number of coloured-in pixels (Patel & Prajapati, 2003). If this value is above a

specific threshold value, the bubble is classified as filled-in, otherwise not. An additional

algorithm is needed to detect if a bubble is crossed out .

8

2.2 Optical character recognition

Figure 2.2: Contours found around corrected answer.

In this project additional contour detection is used to determine if an answer in a

bubble is truly coloured in and not just crossed out. This means that the contour around

the bubble needs to be detected and used in the analysis. In Python (or C++) this can

be implemented using the freely available OpenCV library (Rosebrock, 2016). OpenCV

is an image processing library that has highly optimized techniques to find contours in a

given image. An example of this is shown in Figure 2.2. Once the contour information is

known, the bubbles can be assessed by the pixels inside it, as well as its shape. Thus by

evaluating the shape of a contour it can be determined if a bubble is crossed out or not.

2.2 Optical character recognition

Optical Character Recognition (OCR) software is also needed and applied on the char-

acters blocks present on the templates, to further increase the accuracy of the system. It

is found that one preferred way of performing OCR is using TensorFlow. This method is

described by Google (2017). TensorFlow is a Python library, but allows the building of

instructions to be implemented in efficient C++ code. For this test grader, TensorFlow

is used to construct a deep convolutional neural network (DCNN). Deep convolutional

neural networks are powerful machine learning techniques generally used to process im-

ages. One effective application of a DCNN is that it is excellent at processing an image

containing a digit and estimating that digit.

9

2.3 Conclusion: System requirements

2.2.1 Probabilistic approach

A last piece of information that needs to be investigate is how the bubble and character

evidence can be brought together in an effective way to produce the best estimate of the

intended student entries. Once a bubble and character are analysed, a probabilistic value

is assigned to it. Each bubble has a probability of being filled in, while each character

has a probability distribution over 10 digits. A probabilistic model is needed to predict

these student entries. In Ankan & Panda (2015), a machine learning approach is used

to infer a probability of random variables being in a certain state given evidence. This

method is known as a Probabilistic Graphical Model (PGM). A Probabilistic Graphical

Model (PGM) is a probabilistic framework that consists of a graph that specifies the

probabilistic relationship between a number of random variables. These types of models

work well in some aspects of the medical field. If a patient has certain symptoms, a PGM

can be used to predict what the underlying illness behind the decease is. In this project

a PGM is used to estimate the underlying student entries given the evidence presented.

The library used by Ankan & Panda (2015) is called pgmpy. This library allows for a

PGM to be constructed in Python.

2.3 Conclusion: System requirements

In conclusion it is seen that a combination of image processing and machine learning

techniques is needed to successfully grade a student test paper. A good method in

locating a template is using a Radon transform to find reference lines on an image. Once

this is done, the bubbles can be estimated in the image. It is found that a DCNN

can be implemented to classify digits in the TensorFlow library environment. Once all

these evidence are acquired, a PGM was found to be a preferred method in predicting

the estimated entry answer of the student. In the following chapter, a more detailed

overview on the image processing techniques used in this project is given.

10

Chapter 3

Image processing

The previous chapter focused on existing methods of grading tests automatically. It

was found that most systems only use image processing, without a machine learning

component, to grade these tests. In this chapter the core techniques behind processing

these answer sheets, using image processing, are described. By using only these image

processing techniques a reasonably accurate system can already be constructed. For

further improvements in accuracy, two machine learning approaches can be implemented.

3.1 Orientation detection

As mentioned in Section 2.1.1, there are two main steps in OMR grading. The first

challenge with grading a scanned answer sheet, is finding the orientation of the template

in the image. This can be done by finding two or more reference points on the page.

These reference points then allow for the calculation of the template’s rotation, offset

and size inside the image. In Chapter 2 it was found that the traditional way to find

these reference points was to include them on the page, in the form of black blocks or

lines. Including black blocks is an effective method of finding the template, but might

look a bit less attractive, due to the black blocks on the page.

For this project, the markers or reference points that the software uses are already

present on the template paper. These are the two longest horizontal lines as well as the

two vertical lines on the comment box, as can be seen in Figure 3.1. Together, these

lines have enough information to determine 4 reference points, shown in red in the figure.

These lines are chosen as references, since a Radon transform can easily be applied to

11

3.1 Orientation detection

Figure 3.1: Four markers found from applying Radon transforms.

locate them, as discussed in Section 3.1.2. The system only needs three of those four

lines to find the template and thus can successfully find the template even though one of

the four lines is identified incorrectly. Using the reference points the rotation, offset and

size of the template is determined. However, before the orientation of the image can be

determined, a check must be made to determine if the image might be upside down. This

is done to make it easier to find the orientation afterwards. To determine if an image is

upside down, initial image filtering is required as discussed in the next section.

3.1.1 Initial filtering and orientation detection

In order to check if an image is upside down, the software first needs to find relevant

contours on the page. The contours are then filtered out if it does not loosely match the

characteristics of a bubble or character block. This process can be described in Algorithm

1.

12

3.1 Orientation detection

Algorithm 1 : Filter contours and check image rotation.

1. Threshold the image by making all the pixel values either white (lower than the

mean) or black (higher than the mean).

2. Conduct contour analyses on the image to find all the contours, using the Python

library OpenCV.

3. Filter through the contour array to filter out all contours that are not approximately

the desired size and aspect ratios.

4. Save these contours for later use.

5. Determine if more contours lie above the middle of the image. This is true if the

image is orientated upright. Rotate the image by 180◦ otherwise.

Figure 3.2: Reduced contours in image.

13

3.1 Orientation detection

It is important to note that there are still unwanted contours in the list, but for now

this reduced list is sufficient. Once the list is found, the software counts the number of

contour centrepoints below and above the image center. Figure 3.2 shows the resulting

contours found in the image. As can be seen in the figure, more bubbles should be below

the horizontal center line, for the image to be the right side up. The next step will be to

determine the coordinates of the answers the student wrote down, by first locating the

template in the image. In the next section a mathematical transform is define, which is

used to find the template.

3.1.2 Radon transform

The Radon transform is an integral transform that can be represented by a series of

line integrals over a function f(x, y). These transforms are commonly used in Computed

Tomography (CT) scans where cross-sectional images of the body are needed. Mathe-

matically this transform is defined as

G(r, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos(θ) + y sin(θ) − r)dxdy, (3.1)

where r represents the perpendicular offset of the line and θ the angle of the line. The

variables x and y specify coordinates in a two-dimensional space within which the function

f(x, y) is defined. A visual interpretation of this transform is shown in Figure 3.3. In the

figure Gθ(r) is the Randon transform’s values at a given θ.

Figure 3.3: Radon transform applied on function f , adapted from Edoras (2017).

14

3.1 Orientation detection

Figure 3.4: Result in rotation after applying radon transform.

3.1.3 Finding the template

In this project, the image’s Radon transform is calculated for specific intervals of the

gradient. Each gradient interval will thus generate a one dimensional array of values

corresponding with the pixel intensities along the lines that are being summed, as shown

in Figure 3.3. This method is used to determine where the 2 horizontal and 2 vertical

lines are located, as previously mentioned.

The Radon transform’s values are calculated between the angles 85◦ and 95◦ to find

the first two horizontal lines. It is assumed that the image will not be rotated by more

than 5◦ in either direction. Black lines will cause a spike in value to appear on the

Radon transform for the angle where it is summing parallel with that particular black

line. By finding the transform angle that has this spike in value, the rotation of the

template can be found. The two maximum values that are recorded at this angle are

then taken as the relative locations of the two horizontal lines. After the correct angle

is found, the two vertical lines can be found by applying a Radon transform at an angle

90◦ clockwise from the previously calculated angle. The two peak values at that angle

then provides the relative locations of the two vertical lines. The four reference points

can now be calculated, as seen in Figure 3.1. Once the reference points are found, the

image is rescaled and orientated to the original template size for further processing. In

Figure 3.4 the corrected image is shown.

15

3.2 Bubble detection and processing

Figure 3.5: Detection of contours in image and estimation of bubble locations.

Once the template is located the bubble values and digit blocks can be determined,

using reference location. These reference locations were calculated in preprocessing con-

ducted on an empty template. Figure 3.5 illustrates the final estimation of all the bubbles

in the template. The estimated bubble centres are coloured red, while the green points

represent the centres of all the remaining contours.

Now that a list of possible bubble contours are found with the estimate bubble centres,

one contour needs to be assigned to each bubble.

3.2 Bubble detection and processing

The location of each bubble in the image is found by simply taking the contour closest

to that particular bubble’s estimated location. This is done in an efficient manner by

16

3.3 Data processing and grading

sorting the contours by their locations. Searching through the contours now becomes

linear and of complexity O(n), where n is the number of bubbles. This means that the

processing time to find these bubbles is linearly related to the number of bubbles in the

template image.

Next, the data in each contour needs to be processed and stored. The first type of

evidence is obtained from calculating the average pixel intensity inside the contours. If

this value is high, the bubble is most likely coloured in or crossed out. The advantage of

using the closest contour as the bubble’s estimated location, over conventional methods,

now becomes apparent. In conventional methods, only pixels at the bubble’s estimated

location are used to determine if the bubble is coloured-in. This becomes problematic if

the system needs to know if the bubble has been crossed out, as the only data available

is about pixel intensities.

Using the contours information about the shape of the bubble entry is also known.

Thus by drawing the smallest possible block around the contour, that still covers every

value inside the contour, an area can be calculated. This area becomes large when a

answer is crossed out, due to the lines stretching outside the initial bubble. By inspecting

the area value, the system can successfully determine if the bubble is filled in or crossed

out.

3.3 Data processing and grading

The previous section now allows each bubble to be classified into three categories namely,

empty, completely filled-in or crossed out. An additional category of partially filled in is

also introduced, as it aids grading of tests where students write lightly. An algorithm to

determine what bubble was chosen is described in Algorithm 2.

17

3.4 Conclusion

Algorithm 2 : Calculate the student answer from bubble grid.

1. Start with column 0.

2. Count the number of completely filled-in answers in this column. Store the position

of that entry for later use.

3. If there are no completely filled-in answers, count the amount of partially filled-in

answers and override the previous values.

4. If the previous result is 0, set the output value for that column to 0.

5. If step 2 or 3 presents a value greater that 1, save the answer sheet to a clash list

to be evaluated manually once the automatic grading of the test is completed.

6. Repeat steps 2 to 5 for each column in the bubble grid.

This algorithm therefore checks if there are more that one entry in any of the columns.

If this is true, the results are sent to a clash list to be marked manually. If one bubble

was found to be coloured in, the value gets set to the index of that bubble. Finally, if no

bubbles where coloured in the result for that column are set to 0.

3.4 Conclusion

This chapter provided an overview of a basic automatic test grading system using image

processing and computer vision. The system can achieve acceptable results using only

these techniques.

The following chapter will focus on applying additional machine learning techniques

to further improve the accuracy of grading these tests.

18

Chapter 4

Machine learning approach

The previous chapter briefly described the basic workings of the optical mark recognition

system inside the automatic test grader. There is still a critical piece of evidence that

has not yet been utilized in this basic system, namely the characters that the student

writes in the designated boxes.

This next chapter will provide two machine learning approaches to significantly im-

prove the accuracy in identifying digits over the previous standalone basic system dis-

cussed in Chapter 3. An approach to locate and classify handwritten characters, provided

by the students, using a Deep Convolutional Neural Network (DCNN), is described. A

more accurate method in estimating the student answers and student number, using

Probabilistic Graphical Models (PGM), is also discussed.

4.1 Character recognition using a neural network

This section focusses on processing the characters that the students write in the des-

ignated boxes, as shown in Figure 4.1. A machine learning approach, called a Neural

Network (NN), is implemented to process these digits. This neural network can take an

input of a 28 by 28 dimensional array of floating point numbers. These numbers represent

a 28 by 28 greyscaled image that includes the digit being classified. The neural network is

then tasked with calculating the probability of each digit being present in the particular

image. Before each digit can be classified using a neural network, the individual 28 by 28

greyscaled image must first be found for each digit inside the test sheet. Image processing

is required to achieve this, as described next.

19

4.1 Character recognition using a neural network

Figure 4.1: Image showing found contours for boxes used for character recognition.

4.1.1 Preprocessing and creating digit images

In order to generate a 28 by 28 pixel image for each digit, the system must first find the

location of each digit. Once this is done, the digits are processed and a corresponding 28

by 28 image, best representing the particular digit, can be created. This is done in the

following 6 steps:

1. Find the contour closest to the expected location of the block, calculated in Section

3.1.3. This is illustrated in Figure 4.1. It can be seen that the bubbles are already

processed.

2. Transform each box to become fully rectangular using OpenCV’s four point transform

method. This method applies a four point perspective transform on the image to

reshape it into a rectangular form. An example of the final product can be seen in

Figure 4.2.

3. Perform a Radon transform on the image, at an angle of 0◦ and 90◦ to find the

dark lines in the blocks. These lines are then removed from the image, as shown in

Figure 4.3.

20

4.1 Character recognition using a neural network

Figure 4.2: The box contour found is normalized to form a rectangular shape.

Figure 4.3: Box after black lines are filtered out, found using a Radon transform.

4. Use the locations received from the Radon transform, of the positions of the original

black lines, to segment the image into the different boxes.

5. A custom segmentation algorithm is used to find the pixels most likely to belong

to the digit, as shown in Figure 4.4. This algorithm is developed and implemented

using a breadth first search technique to cluster the image into different segments.

The algorithm first searches the image for pixels higher than a specific threshold

value. This value specifies if a pixel is background or belongs to an object. Then

all the pixels higher than the threshold value are assigned to a segment. A segment

is classified as a local region that does not connect to any other segment through

pixels higher than the threshold value. The segment that most likely represents the

digit is then extracted by looking at it’s area and centrepoint.

6. The area that the segment occupies is then calculated, as shown in Figure 4.5.

7. Next the segment is centred and normalized using the image area as reference. This

is shown in Figure 4.6.

21

4.1 Character recognition using a neural network

Figure 4.4: Custom segmentation algorithm used to find the main cluster in the remaining

image.

Figure 4.5: Area block drawn around the segment most probable to belong to the digit.

Figure 4.6: Final image after translation and normalization are applied.

22

4.1 Character recognition using a neural network

8. The image is then reshaped into a 28 by 28 greyscaled image to be processed by

the neural network.

As mentioned, a 28 by 28 greyscaled image is used as input. Thus if each pixel represents

one value, ranging from 0.0 to 1.0, there are a total of 748 input values. Each digit image

is therefore represented by one of these 28 by 28 greyscaled images. These 784 numbers

are now used as input to a neural network to predict the digit. An overview of this neural

network will be given next.

4.1.2 Classification of digits

A neural network (NN) is a powerful machine learning tool for approximating complex

functions. The basic architecture of a neural network is illustrated in Figure 4.8. These

networks are simplified approximations of how neurons in the brain work. Each neuron

in the network acts as a small processing unit that can take an input and produces an

output. The power of a NN lies in the ability of these neurons to be able to approximate

different functions by adjusting their internal values, depending on the characteristics the

user wants the network to approximate. By adjusting these internal weights, complex

functions can be trained onto these networks.

For this project, a NN is trained to estimate the probability of which of the 10 digits,

from 0 to 9, are most likely present in the input image. The neural network inputs a two

dimensional array, representing a greyscaled image, to the network. Figure 4.7 illustrates

an example input of a NN using a 14 by 14 example image. For this project a 28 by 28

image is used. In the next section the basics of these NN are discussed.

Figure 4.7: Example image used as input to the neural network, from Tensorflow (2017).

23

4.1 Character recognition using a neural network

Figure 4.8: Basic structure of a neural network, from Karpathy (2017).

4.1.2.1 The Neural Network basics

The neuron unit is a small processing unit. By including many of these neurons a neural

network can be built. Neural networks consist of input, hidden and output layers (Nielsen,

2015). This network works by first assigning values to the input layer of the network.

For this project those values are the 784 values received from the digitized image. The

network then sends signals through the network and generates an output. A breakdown

of a neural network will be given next.

4.1.2.2 The artificial neuron

Each neuron in the network takes in a list of input values. These input values are the

output values of the neurons in the previous layer, again illustrated in Figure 4.8. The

weighted sum of these inputs are then added with the bias variable to give

z =
c∑
i=0

xi · wi + b. (4.1)

In Equation 4.1, c is the number of inputs and xi and wi are the input and weight values

at index i. The bias term, b, enables an offset in the output, z, of the neuron. These bias

term and weighted values are determined in the network’s training process. The value,

z, is then normalize using the sigmoid function,

σ(z) =
1

1 + e−z
. (4.2)

24

4.1 Character recognition using a neural network

The artificial neuron therefore takes in a weighted input with a bias and produces a

normalized output σ(z). By adjusting the weights and bias variable, each neuron can

learn to exhibit certain characteristics. This process allows different functions to be

approximated by adjusting these variables. If a network of these neurons is used together,

as illustrated in Figure 4.8, complex functions can be trained onto the network. In this

project, these weights and biases need to be set to specific values, to allow the network

to accurately categorize digits from an image.

4.1.2.3 Generating an output from the network

After the 748 input values have been assigned to the network inputs, each of the network’s

layers can be calculated consecutively. This is done using Equations 4.1 and 4.2 on each

layer consecutively, starting at the first hidden layer. Once the first layer’s outputs are

calculated, the next layer can be calculated using those values as input. This process is

repeated until all the layers are calculated. Once all these values are calculated, the final

values can be read from the output neuron that represents the result. In this project

ten output neurons are used to represent the likelihood of each of 10 digits, given the

input data. The output neurons are then turned into probabilities by normalizing these

outputs using

p(i) =
σ(zi)∑10
k=0 σ(zk)

, (4.3)

where p(i) is the probability of digit i being in the image. The value σ(zi) represents the

values of the output neuron at index i.

4.1.2.4 Deep Convolutional Neural Network

The previous section gave an overview of a basic neural network implementation. In re-

cent years much more powerful NN, such as Deep Convolutional Neural Network (DCNN),

have been introduced. A DCNN uses the basic principles described above, but has extra

optimized features that allow a neural network with many layers to be constructed and

trained. A DCNN is implemented in TensorFlow (Google, 2017) and allows a NN to

achieve highly accurate results on classifying digits. For this project a neural network

25

4.2 Probabilistic Graphical Models

optimized for digit classification, as implemented by Google (2017), is used. The neural

network is customized to increase its accuracy for this specific grading system.

4.1.2.5 Training of the neural network

The Modified National Institute of Standards and Technology (MNIST) dataset is used

to train the DCNN neural network (Yann LeCun & Burges, 1998). This is a database

that has a labelled training set of 60 000 images and a labelled test set of 10 000 images.

For each image in the database, there is an accompanied label that specifies the digit

value. The NN is then trained to model this training set. This is done by adjusting

the network’s internal weights so that the network’s output better represent the labelled

training data, given the input images. The basic idea behind the training method used

in a neural network is described in Algorithm 3.

Algorithm 3 : Overview on training a neural network.

1. Calculate the network’s output for each of the training images used in the training

round.

2. Obtain the error function of the network, using a formula that compares the true

labels of the training image with the estimated labels generated by the network.

3. Use a method, such as gradient decent with back propagation, which allows the

system to adjust the weights in a direction that minimize a specific error function.

4. Repeat steps 1 to 3 until a time or accuracy criterion is met.

Once this process is completed, the network is ready to classify handwritten digits.

This produces a probabilistic output of each intended digit in the test sheet. The next

step is to incorporate this character evidence with the bubble evidence to produce an

accurate estimate of the intended student entries.

4.2 Probabilistic Graphical Models

The final problem the system needs to solve, is to probabilistically determine the most

likely student entries, given the bubble and character evidence. This is achieved by

26

4.2 Probabilistic Graphical Models

Figure 4.9: Graphical setup for determining the intended digit written by a student.

implementing two Probabilistic Graphical Models (PGMs).

4.2.1 Overview of the system

A Probabilistic Graphical Model (PGM) is a probabilistic graph containing random vari-

ables, where the graph expresses the conditional independence structure between these

variables. The type of PGM used for this project is a Bayesian network. A Bayesian net-

work models a set of random variables and their conditional dependencies via a directed

acyclic graph (DAG). A graphical model in essence allows a problem to be represented

as information (nodes or circles) and relationships (directed arrows). An example of such

a graph is shown in Figure 4.9. The directions of the arrows represent what information

causes other information to be created, thus given a parent to offspring interpretation.

These graphs allow for intuitive reasoning about how the system should operate. For this

project an observation is made in the form of character and bubble evidence. The models

are then tasked with inferring the values the student most likely wrote down, given the

evidence.

4.2.2 Estimating the intended digit

Figure 4.9 should be interpreted in the direction which information flows. Originally a

student has a certain digit that he/she wants to portray on the page. This is given by

27

4.2 Probabilistic Graphical Models

the ’Intended Digit’ node. There are 10 possible digits to consider and thus the node

has 10 possible states. The intended digit then gives rise to character evidence as an

image written in a block. Bubble evidence is also produced from the intended digit,

but a variable is first introduced in between these two. The student might sometimes

mistakenly think that the first bubble represents 0 and thus even if the intended digit is

0, the intended bubble might be 1. Thus the intended bubble category is also introduced,

which then produces the bubble evidence, again illustrated in Figure 4.9.

After the model is constructed, the intended digit needs to be estimated, with the

image as evidence. This can be done by reasoning from the bottom (image evidence)

upwards to the intended digit. The first step is to process the image to produce more

tractable evidence. Producing bubble evidence from an image is described in Chapter

3. In Section 4.1.1, the process to extract the character evidence from the image is also

described. Using a NN the prior probability of each digit can be determined form the

character box evidence. The next step is to assign the prior intended digit probability

and bubble evidence to a PGM. Using this digit PGM, the intended digit can be inferred.

4.2.3 Estimating the student answer

An answer is represented by 8 columns, shown in Figure 4.10. The first column represents

the sign of an answer. Thus two signs are possible. For each of the remaining 7 columns

a number from 0 to 9 can be represented in each column. Thus there are 10 possible

values for each of these 7 columns. This gives a possible number of values that an

Figure 4.10: Graphical setup of student answer.

28

4.2 Probabilistic Graphical Models

answer can take to be 2 · 107, equalling 20 000 000. Calculating each of these states

is computationally intractable. Thus an assumption is needed to reduce the number of

possible states. A fair assumption to make, is that all 20 000 000 possible values are

equally likely to be written down. Consequently each column digit becomes independent

of the other columns’ values. This means that if a value in one column is known, it does

not influence the probabilities of the other columns having a certain value. Thus the

number of states to calculate now becomes 2 + 10 · 7, equalling 72, since each column’s

states can now be calculated independently. Knowing this independent property, the

student’s answer can be calculated by using 7 digit models and a heuristic calculation of

the intended sign.

4.2.4 Estimating the student number

For the student numbers, knowing one digit value of a column influences the probabilities

of the other columns having a certain number. The reason for this is that there are only

a limited number of student numbers to consider. For example if the first digit is a 2,

only student numbers starting with 2 still have to be considered. To account for this, an

additional node is added above the individual digit probabilities, as seen in Figure 4.11.

This node represents the probability of each student number being present in the image.

The number of states of this node is in the order of 900, depending on the number of

student numbers. Once the graph has been set up, the model can be used to infer the

most probable student number. By setting all the bubble evidence and character priors,

Figure 4.11: Graphical setup of student number.

29

4.3 Conclusion

the student number probabilities can be inferred. This model allows for an accurate

result, because student numbers normally differ in more than one digit. The system

can thus strongly differentiate between student numbers and determine which student

number is most likely. It is found that if the student provides only character information

with no bubbles coloured in, an accurate estimate can still be made.

4.2.5 Training of a Probabilistic Graphical Model

In a PGM the conditional probabilities distributions between each random variable that

has a relationship (arrow) is needed. In order to calculate these conditional probabil-

ity distributions, training data must be gathered. The previous basic model with the

character recognition software is used to estimate the answers for 100 test sheets. Once

these sheets were graded, the results were manually checked. Thus each training label

now contained bubble evidence and character proirs from the NN. With this information,

each training set is used to infer the conditional probability needed to train both the digit

and student number models. For a mathematically approach to these two PGM models,

refer to Appendix C.

4.3 Conclusion

This chapter discusses two machine learning techniques to improve the accuracy with

which the system infers the answers written on each scanned test sheet. A method is

shown, using a NN, to estimate the probability of each digit given only the character

box as input. Additionally, an approach is discussed, using a PGM, to allow the system

to make a final prediction of what the student intended to write down given the image

evidence. The PGM method is found to be accurate enough to determine the student

number by only using the character recognition information provided. The following

chapter will cover the validation and results of the system from weekly grading done for

the Applied Mathematics Department.

30

Chapter 5

Analysis of results

This chapter discusses the accuracy of the test grading system. In the first two sections of

this chapter, the basic and complete system are compared using the same datasets. The

first test grading system includes only image processing techniques described in Chapter

3. The second system contains the complete project software with all the machine learning

techniques described in Chapter 4.

Each system is assessed using two categories. The first category describes all the tests

the system transferred to the user for manual marking. The reason for this is that the

system calculated a certainty level below a specific threshold for that particular test. In

this category the tests are send to a clash list. After all the tests are graded, the system

displays an interface with values it estimated the student wrote down. An additional

image of the test is also displayed. The user is then tasked with looking through each

of the clash list tests, using the interface, to see if any tests is graded incorrectly by the

system. This process is normally fast, as the system has a high accuracy in predicting

the answers correctly. In the last category, all the answers that the system decided to

grade automatically, but identified incorrectly, is described.

5.1 Results of 25 test cases

In this section the results of grading 25 hand picked tests are compared between the

two systems. Among the 25 tests, there are different categories that evaluate different

aspects and limitations on both systems. The categories and the number of tests for the

particular category, are listed in Table 5.1.

31

5.1 Results of 25 test cases

Table 5.1: Description of 25 evaluation tests.

Description of test type Number of tests

Test with crossed-out answers 7

Test with lightly coloured entries

or partially coloured-in entries

4

Test with negative signed answers 1 (also included under

other categories)

Test with no bubbles and only

characters filled in for a specific

entry field

5

Test with no characters filled in

and only bubbles for a specific en-

try field

2

Test with data filled in correctly 2

Page with no template on it (Pos-

sible scanned upside down)

2

Page with rotated template inside

image

2

32

5.1 Results of 25 test cases

Figure 5.1: Image showing answer with crossed-out answers that the system misinter-

preted.

These tests are specifically chosen, because combined, they approximates all the types

of tests the system have to assess. Most of the tests are extreme cases of what students

have filled in on test forms. These tests provide a good benchmark to determine how

well each system performs in challenging situations.

5.1.1 Basic system

Using the basic system, an average time evaluating each test is calculated to be 0.305

seconds on the grading computer. An overall grading accuracy of 84.6% was recorded for

this system.

5.1.1.1 Clash list

A total of 6 out of the 25 tests were reported as clashes. The two images without a

template were reported in the clash list. Furthermore, 1 test which only has the student

number written in characters with no bubble information was also reported to the list.

The other 3 clashes were reported due to the crossed-out bubbles being interpreted as

33

5.1 Results of 25 test cases

Figure 5.2: Filled-in answer with only character information.

still filled in, causing the system to think that two answer bubbles were filled in. An

example of this is shown in Figure 5.1.

5.1.1.2 Incorrect automatic graded results

There where 4 tests that where graded automatically, but incorrectly. All of these tests

had only character information in at least one of the answers. An example of this can be

seen in Figure 5.2.

5.1.2 Complete system

Using the complete system, an average time evaluating each test is calculated to be 2.011

seconds. An overall grading accuracy of 100.0% was recorded for this system.

5.1.2.1 Clash list

A total of 6 out of the 25 test where reported as clashes. The two images with no template

in were again reported in the clash list. Two cases was reported to the clash list due to

the character recognition determining a crossed-out character as the intended character,

but with low certainty. An example of this is shown in Figure 5.3. One test was reported,

34

5.1 Results of 25 test cases

Figure 5.3: Crossed-out character that confused the grading system.

because it only had characters in with no bubbles coloured in. Thus, even though the

system identified every character correctly, it had a too low percentage confidence in its

answer and reported it to the clash list.

5.1.2.2 Incorrect automatic graded results

There were no automatically graded answers that were done incorrectly.

5.1.3 Analysis of results

The systems both had the same number of clash list tests from these 25 images. The

complete system took on average 2.011 seconds to grade a test. The student number

PGM consumes most of that time, 1.5 seconds, to infer the correct student number. The

complete system had no incorrectly automatically graded answers, in contrast to the 4

graded incorrectly using the basic system. A reason to this is attributed to more evidence

that are considered in the complete system. Therefore only if the evidence match up will

the system be certain enough to accept its answer as the correct one. In the next section

the complete system is used to grade a tutorial test written by all the students.

35

5.2 Grading of tutorial tests

5.2 Grading of tutorial tests

In this section the complete system is tested on a tutorial written by all the students

in the class. The final version of the complete system was used in grading the students’

tests. Student feedback was recorded to find tests that were graded incorrectly and used

as the grader’s results.

5.2.1 Marking statistics

For these tutorial test an average marking time per test of 2.01 seconds was recorded.

5.2.2 Clash list

There were in total 57 clashes in the 888 tests. These 57 clashes are categorised in Table

5.2.

5.2.3 Incorrect automatic graded results

The students were asked to report any results that were marked incorrectly by the system

for this particular test. These results are all the results that the system decided to accept

the automatically graded answer, and in doing so, graded the test incorrectly.

Only 1 result was reported where the software automatically marked the answer in

an incorrect manner. The correct answer was -95.0 and the system marked the answer

as 95.0, as shown in Figure 5.4. There may still be tests that were marked incorrectly,

but these tests were not reported. In comparison there were 15 known mistakes made in

the first tutorial using the basic system.

For a more detailed description of the results from grading all 4 tutorial tests, refer

to Appendix E.

5.2.4 Conclusion

In conclusion, it is noted that the complete system, with its machine learning capabilities,

reduces the number of tests that the user must mark manually, in comparison with the

previous basic system. For this complete system, about 7.5% of the tests in the tutorial

had to be marked manually, due to the system being unsure of the answers. The system

36

5.2 Grading of tutorial tests

Table 5.2: Description and quantity of clashes in the different categories.

Number of

tests

Category description

in category

31 In these tests the system determined the

right values, but was unsure about its an-

swer. Some of the cases were when the stu-

dent number was only filled in the character

box. The software always identified the cor-

rect student number, but was still uncertain

about the answer.

15 In these tests the system could not distin-

guish between a crossed-out answer and cor-

rect answer. This is due to the crossed-out

answer being interpreted as a filled in answer.

8 These tests have an answer with only char-

acter information in them. The system at-

tempted to identify each answer, but made a

mistake in at least one of the digits.

2 These images contained blank papers that

did not include test templates.

1 In this test the grid of the test paper could

not be found and thus test could not be

marked.

37

5.2 Grading of tutorial tests

Figure 5.4: Incorrectly identified answer as 95.

does however grade 99.9% of the tests correctly, when the system decides to grade them

automatically. The reason for this can be attributed to the fact that the system correlates

two pieces of evidence to predict the correct answer. Thus, both the character and bubble

information had to be interpreted incorrectly for the system to automatically grade an

answer incorrectly.

The system could grade 92.5% of all the test correctly and automatically. From the

remaining 7.5% only 1 test or 0.1% of the tests was found to be graded incorrectly and

the other 7.4% of the tests were sent to a clash list. The system classified most of the

clash list tests correctly. If the clash list threshold level of the system is set to 0 the

system could possibly have graded 97.1% of the tests correctly.

38

Chapter 6

Summary and conclusions

6.1 Project summary

In this project an automatic test grading system was developed with the aim of grading

student tests using a special template. Initially, research was done on existing methods

for grading tests automatically. It was found that traditionally only image processing

methods are used to grade bubbles on a paper. For this project additional machine

learning capabilities was built into the system. This allows for a better estimation of

what the student intended to write down on the paper.

6.2 How this final year project benefits society

In the African society there is a great number of individuals who do not have access to

quality educational opportunities. The educational systems these individuals do have are

normally not up to standard and have limited teaching assistance. Educators who are

available are not always accessible to learners to provide quality education. Automatic

Mark Recognition software such as the one developed in this project allows for a large

number of tests to be assessed automatically and accurately in a short time span. This

assist educators in handling bigger classes and thus provide more learners the opportunity

for a better education.

39

6.3 What the student learned

6.3 What the student learned

During the execution of this project, the student learned that time management is im-

portant to complete a project of this scale. Time management also allows an individual

to continuously assess how he/she is doing with respect to a schedule. This not only

increases performance, but also self-confidence in the final product. Finally, the student

learned how to develop a software package in a professional environment. This project

also allowed the student to gain a basic knowledge on a broad range of fields including

image processing, neural networks and probabilistic graphical models.

6.4 Future improvements

To increase the speed of grading tests it should be considered to use Stellenbosch’s custom

PGM library, implemented in C++. By continuously updating the estimated orientation

of the template as more bubble contours are classified, accuracy in finding these bub-

bles can be increased. Further increases in test grading speed can be achieved by only

doing image processing on the expected locations of the bubbles. This will bring some

extra technical hurdles, but can increase the software’s speed. Lastly the accuracy of

the character recognition neural network can be increased by making use of Generative

Adversarial Networks (GAN) to train the network on actually classified test results.

6.5 Summary and conclusions

For 890 tests the system takes approximately 30 minutes to grade the tests. This time

is acceptable for the department, since the test format allows for more flexible answers,

compared to traditional multiple choice tests. Additionally a student number can be

identified by only referring to the characters written in the student number box. The

system has an overall accuracy of 97.1% with only automatic grading. An additional

feature is implemented that transfers tests which the system is uncertain about, to a user

to manually grade. Combined with the human operator, only 1 test in every tutorial

session are graded incorrectly. In combination with the manually checked tests, the

system thus obtains a 99.9% accuracy on grading tests correctly, while still allowing

students greater flexible in the methods of answering these tests.

40

References

Ankan, A. & Panda, A. (2015). pgmpy: Probabilistic graphical models using python.

Proc. of the 14th Python in science conf. 10

Edoras (2017). The inverse radon transform. Image Processing Toolbox. ix, 14

Google (2017). Deep mnist for experts. 9, 25, 26

Ivetic, D. & Dragan, D. (2003). Projections based omr algorithm. 8

Karpathy (2017). Cs231n convolutional neural networks for visual recognition. ix, 24

MathWorks (2017). Detect lines using the radon transform. 8

Nielsen, M.A. (2015). Neural Networks and Deep Learning , vol. 1. Determination Press.

24

Patel, N.V. & Prajapati, G.I. (2003). Various techniques for assessment of omr

sheets through ordinary 2d scanner: A survey. International Journal of Engineering

Research & Technology (IJERT), 4. 8

Rosebrock, A. (2016). Bubble sheet multiple choice scanner and test grader using omr,

python and opencv. 9

Tensorflow (2017). Mnist for ml beginners. ix, 23

VijayaForm (2017). Omr sheet. ix, 7

Yann LeCun, C.C. & Burges, C.J. (1998). The mnist database of handwritten digits.

26, 63

41

Appendix A

Project plan

The work layout plan for this project is shown in Figure A.1. This plan was last updated

on 23 October 2017. The idea behind this plan was to allow the student to have a time

frame to plan and measure the project’s progress against.

42

ID
Tas

k N
am

e
Dur

atio
nS

tart
Fini

sh

1
Lite

ratu
re S

tud
y

6 d
ays

We
d 1

7-0
6-2

8 0
8:0

0 A
M

We
d 1

7-0
7-0

5 0
5:0

0 P
M

2
Cur

ren
t OM

R Sy
stem

s
2 d

ays
We

d 1
7-0

6-2
8 0

8:0
0 A

M
Thu

 17
-06

-29
 05:

00
PM

3
Ima

ge P
roc

ess
ing:

 Cro
ss d

ete
ctio

n
2 d

ays
Fri

17-
06-

30
08:

00 A
M

Mo
n 1

7-0
7-0

3 05
:00

 PM
4

Ma
chin

e le
arn

ing
tec

hni
que

s
2 d

ays
Tue

 17
-07

-04
 08:

00
AM

We
d 1

7-0
7-0

5 0
5:0

0 P
M

5
Bas

ic S
yste

m
9 d

ays
We

d 1
7-0

7-0
5 0

5:0
0 P

M
Tue

 17-
07-

18
05:

00
PM

6
Plan

nin
g of

 bas
ic s

yste
m

2 d
ays

We
d 1

7-0
7-0

5 0
5:0

0 P
M

Fri
17-

07-
07

05:
00 P

M
7

Grid
 fin

din
g al

gor
ithm

2 d
ays

Fri
17-

07-
07

05:
00 P

M
Tue

 17
-07

-11
 05:

00
PM

8
Bub

ble
find

ing
algo

rith
m

2 d
ays

Tue
 17

-07
-11

 05:
00

PM
Thu

 17
-07

-13
 05:

00
PM

9
Firs

t co
mp

lete
 sys

tem
3 d

ays
Thu

 17
-07

-13
 05:

00
PM

Tue
 17

-07
-18

 05:
00

PM
10

Cha
rac

ter
Rec

ogn
itio

n
26

day
sT

ue
17-

07-
18

05:
00

PM
We

d 1
7-0

8-2
3 0

5:0
0 P

M
11

Res
ear

ch T
ens

orF
low

1 d
ay

Tue
 17

-07
-18

 05:
00

PM
We

d 1
7-0

7-1
9 0

5:0
0 P

M
12

Tra
in n

eur
al n

etw
ork

20
day

sT
hu

17-
07-

20 0
8:0

0 A
M

We
d 1

7-0
8-1

6 0
5:0

0 P
M

13
Inco

rpo
rate

 int
o sy

stem
5 d

ays
Thu

 17
-08

-17
 08:

00
AM

We
d 1

7-0
8-2

3 0
5:0

0 P
M

14
Pro

bab
ilist

ic G
rap

hica
l M

ode
l

6 d
ays

Thu
 17

-08
-24

 08
:00

 AM
Thu

 17
-08

-31
 05

:00
 PM

15
Tes

t pg
mP

y se
tup

3 d
ays

Thu
 17

-08
-24

 08:
00

AM
Mo

n 1
7-0

8-2
8 05

:00
 PM

16
Imp

lem
ent

 PG
M

3 d
ays

Tue
 17

-08
-29

 08:
00

AM
Thu

 17
-08

-31
 05:

00
PM

17
Rep

ort
40

day
sF

ri 1
7-0

9-0
1 0

8:0
0 A

M
Thu

 17
-10

-26
 05

:00
 PM

18
Wri

te b
ody

 of
rep

ort
20

day
sF

ri 1
7-0

9-0
1 08

:00
 AM

Thu
 17

-09
-28

 05:
00

PM
19

Wri
te a

ppe
ndi

ces
 of

rep
ort

15
day

sF
ri 1

7-0
9-2

9 08
:00

 AM
Thu

 17
-10

-19
 05:

00
PM

20
Fina

lise
 rep

ort
5 d

ays
Thu

 17
-10

-19
 05:

00
PM

Thu
 17

-10
-26

 05:
00

PM

19
26

03
10

17
24

31
07

14
21

28
04

11
18

25
02

09
16

23
30

'17
Jul

'17
Aug

'17
Sep

'17
Oct

'17
Nov

Tas
k

Spl
it

Mil
esto

ne
Sum

ma
ry

Pro
ject

 Su
mm

ary
Inac

tive
 Tas

k
Inac

tive
 Mi

lest
one

Inac
tive

 Su
mm

ary
Ma

nua
l Ta

sk
Dur

atio
n-o

nly
Ma

nua
l Su

mm
ary

Rol
lup

Ma
nua

l Su
mm

ary
Sta

rt-o
nly

Fini
sh-

onl
y

Exte
rna

l Ta
sks

Exte
rna

l M
iles

ton
e

Dea
dlin

e
Pro

gre
ss

Ma
nua

l Pr
ogr

ess

Pag
e 1

Pro
ject

: Pr
ojec

tPla
n.m

pp
Dat

e: M
on

17-
10-

23 0
7:35

 AM

Figure A.1: Project plan for the final year project.

43

Appendix B

Outcome compliance

Tables B.1 and B.2 describes the required ECSA Exit Level Outcomes and how this

project adheres to these outcomes.

44

Table B.1: Description of exit level outcomes and how this project adherse to them.

Outcome Reference Description
1. Problem solving: Identify, for-
mulate, analyse and solve com-
plex engineering problems cre-
atively and innovatively.

1,2,3,4 In Chapter 1 the project was
analysed and formulated into dis-
crete problems. This allowed the
problem to be solved by solv-
ing small sub-problems. Further
improvements using two machine
learning techniques were also in-
troduced above the normal OMR
systems.

2. Application of scientific and
engineering knowledge: Apply
knowledge of mathematics, nat-
ural sciences, engineering funda-
mentals and an engineering spe-
ciality to solve complex engineer-
ing problems.

1, 3 & 4 Engineering knowledge obtained
in the degree allowed for the un-
derstanding and implementation
of mathematical concepts such as
Neural Networks, Radon trans-
forms and Probabilistic Graphi-
cal Models. Further computer
programming knowledge was also
used to implement the software in
an efficient manner.

3. Engineering Design: Per-
form creative, procedural and
non-procedural design and syn-
thesis of components, systems,
engineering works, products or
processes.

1, 3 & 4 In the design process of imple-
menting Image Processing and
Neural Networks a procedural
process is demonstrated. Im-
plementing the two Probabilistic
Graphical Models demonstrates a
more creative approach to this
problem.

5. Engineering methods, skills
and tools, including Information
Technology: Demonstrate com-
petence to use appropriate engi-
neering methods, skills and tools,
including those based on informa-
tion technology.

1.4, 1.5 & 5 Engineering methods used in this
project include agile develop-
ment, software version control,
through Git, and project schedul-
ing to efficiently manage time.

45

Table B.2: Description of exit level outcomes and how this project adherse to them.

Outcome Reference Description
6. Professional and techni-
cal communication: Demonstrate
competence to communicate ef-
fectively, both orally and in writ-
ing, with engineering audiences
and the community at large.

All This outcome is demonstrated in
the report and oral presentation.

9. Independent Learning Abil-
ity: Demonstrate competence to
engage in independent learning
through well-developed learning
skills.

2,3 & 4 Independent learning was contin-
uously required in understanding
new concepts in each stage of the
project’s design process. These
concepts includes Neural Net-
works, Radon transforms, Proba-
bilistic Graphical Models and Im-
age Processing, which were not
taught in the engineering degree.

46

Appendix C

Mathematical and graphical
description of system

In this appendix a graphical and mathematical derivation for the system is given. It is

shown through mathematical derivation how the pgmpy software can predict the student

number and answer, given the probability distributions and evidence. It should be noted

that the software exploits additional methods in calculating these values in an efficient

manner.

C.1 High-level overview

As described in Chapter 1, the system can fundamentally be represented with 6 informa-

tion nodes. These nodes are shown in Figure C.1. The student has 5 pieces of information

Figure C.1: System overview.

47

C.2 The student answer

that he/she wants to portray, signifying the first 5 nodes. Those 5 nodes give rise to the

image, representing the last node. At its core the system is tasked with inferring two

types of conditional probabilities namely P (S/I) and P (A/I). The random variables S

and A represent all the possible values that the student number and answers can possibly

have. The image, I, is also a random variable representing the total number of possible

states the image can take. Each image has a width and length of 1 240 by 1 754 pixels.

For every pixel there are 256 possible values, ranging from 0.0 to 1.0. Thus the number

of possible images are in the range of 1 240 × 1 754 × 256. To practically represent this,

more detailed derivations and assumptions is needed. These derivations are described in

the next sections.

C.2 The student answer

In Section 4.2.3, it was determined that the student’s answer can be calculated by com-

bining the intended sign and digits of each column, which is calculated separately. This

is attributed to the fact that these digits are independent of one another, as illustrated

in Figure C.2.

The intended digit in a certain column is not influenced by what the values in the

other columns are. This independence property is thus described by

P (A/I) = P (Si/I)P (D1/I)...P (D7/I), (C.1)

where A and I again represent an answer for a specific question and the image. The

random variable Si represents the sign of the answer. P (Di/I) represents the probability

of each of the 10 digits being written down in column i.

Figure C.2: Graphical setup of determining student answer.

48

C.3 The intended digit

To find the most probable answer, only P (Sn/I) and P (D1−7/I) need to be calculated.

Using image processing techniques described in Section 3, P (Si/I) can be determined

heuristically by determining the probability of the bubble being coloured in, underneath

the sign. Thus the only values that still need calculate is P (D1−7/I), as derived in the

next section.

C.3 The intended digit

In determining an intended digit there are 11 information nodes to use as evidence. These

nodes represent the 10 bubbles and character block, as shown in Figure C.3. Extra nodes

are also added to symbolise the intended bubbles as described in Section 4.2.2. The first

bubble might sometimes incorrectly be associated with digit 0. Thus even if the student

intended the digit 0 as an answer, the intended bubble of that student was actually the

bubble for digit 1.

The probability of each column’s digit is describe by P (Di/I). This value again

represents the probability of each of the 10 digits being written down in column i . We

know that the digit evidence is calculated heuristically using image processing. Each

bubble thus has an evidence value with 4 possible states, namely not filled-in, crossed

out, partially filled-in and completely filled-in. Thus the estimate of the intended digit

is now represented by P (Di/I,BEi, CEi). BEi and CEi represents all the bubble and

character evidence for that digit. As seen in Figure C.4, Di and I becomes independent

from one another given the values of BEi and CEi. Thus the probability of the intended

Figure C.3: Column with evidence that gets considered for the calculation of an intended
digit.

49

C.3 The intended digit

Figure C.4: Graphical setup of determining intended digit.

digit is now given by P (Di/BEi, CEi). BEi is further described by

P (BEi) = P (BEi:0, BEi:1, ..., BEi:9), (C.2)

where P (BEi:j) represents the probability of the bubble evidence at bubble j in digit i.

BIi is then represented by

P (BIi) = P (BIi:0, BIi:1, ..., BIi:9), (C.3)

where P (BIi:j) represents probability of the intended bubble at bubble j in digit i.

P (Di/BEi, CEi) can now be represented by

P (Di/BEi, CEi) =
∑
∀BIi

P (Di, BIi/BEi, CEi) (C.4)

=
∑
∀BIi

P (BEi, CEi/Di, BIi)P (Di, BIi)

P (BEi, CEi)
. (C.5)

In Equation C.5, the intended bubble term is brought in by making use of the sum

rule. Bayes’ rule is then applied. In Figure C.4, BEi and CEi is seen to be independent

when Di or BIi is known. Further it is observed that BEi is only dependent on BIi and

CEi only dependent on Di. Thus by applying an additional product rule it is determined

that

P (Di/BEi, CEi) =
∑
∀BIi

P (BEi/BIi)P (CEi/Di)P (BIi/Di)P (Di)

P (BEi, CEi)
. (C.6)

50

C.4 The student number

Bayes’ rule also provides us with,

P (CEi/Di) =
P (Di/CEi)P (CEi)

P (Di)
. (C.7)

By factoring out all the constant terms out of the summation the equation reduces

to,

P (Di/BEi, CEi) =
P (CEi)

P (BEi, CE, i)

∑
∀BIi

P (BEi/BIi)P (BIi/Di)P (Di/CEi). (C.8)

The constant terms gets ignored in the pgmpy package due to them only being normalizing

terms. Once the summation has been calculated the software simply normalizes the

resulting values without needing those terms. Thus only P (BEi/BIi), P (BIi/Di) and

P (Di/CEi) are needed.

P (BEi/BIi) and P (BIi/Di) are both terms that is deduced from training. The final

term that is needed is P (Di/CEi). This term is efficiently represented through the use

of a neural network. Thus the PGM system can successfully infer the digit probabilities

and thus the student answer with these 3 distributions specified. A derivation on the

student number probability is discussed next.

C.4 The student number

As state in Section 4.2.4, the assumption of independence between digits does not hold

in the case of a student number. The reason for this is, because every 8 digit number is

not equally likely to be a student number. Only student numbers that are valid needs to

be considered as a possible state that the student number node can take. This node has

approximately 900 states, depending on the number of student numbers. The student

number graph can be seen in Figure C.5.

A derivation for P (S/I) is needed next. As stated previously, S represents a random

variable over all the possible student numbers. I again represents the image. We know

that the digit evidence is calculated heuristically using image processing. Thus the esti-

mate of the student number is now represented as P (S/I,DE). DE now represents all

the bubble and character evidence. As seen in Figure C.5, S and I becomes independent

from one another given the values of DE. Thus the probability of the intended digit is

now given by P (S/DE).

51

C.4 The student number

Figure C.5: Graphical setup of determining student number.

DE is further described by

P (DE) = P (BE1, CE1, BE2, CE2, ..., BE8, CE8). (C.9)

DI is described by

P (DI) = P (D1, D2, ..., D8). (C.10)

P (S/DE) can now be represented by

P (S/DE) =
∑
∀DI

P (S,DI/DE) (C.11)

=
∑
∀DI

P (DE/S,DI)P (S,DI)

P (DE)
. (C.12)

In Equation C.12, the digit intended term, DI, is brought in by making use of the

sum rule. Bayes’ rule is then applied as shown.

In Figure C.5, DE is shown to be independent of S if DI is known and thus,

P (S/DE) =
∑
∀DI

P (DE/DI)P (DI/S)P (S)

P (DE)
. (C.13)

Finally from the digit and student number graph structure the following independence

properties are also known,

P (DE/ID) = P (BE1/BI1)P (CE1/D1)...P (BE8/BI8)P (CE8/D8) (C.14)

52

C.4 The student number

P (S) can be initialized as an equal distribution, because every student number has

the same likelihood of being in a given test. P (DI/S) are values that are trained from

data using the independence property,

P (DI/S) = P (D1/S)...P (D8/S). (C.15)

This value symbolizes the probability that the user intended to write down a digit given

that student number. If the first digit of the student number is 1, the first intended digit

will have a high probability of being 1. Thus these two random variables are strongly

correlated. The only values that still need to be calculated are thus P (DE/ID). Using

the indepenency property of

P (DE/ID) = P (BE1/BI1)P (CE/D1)...P (BE8/BI8)P (CE/D8), (C.16)

the intended digit model’s conditional distributions can be used. The two PGM models

can now be fully defined and used to infer the intended student entries from an image.

53

Appendix D

Systems diagrams and software

D.1 Software

The Git repository for this complete system can be found at

https://github.com/DriesSmit/AutoTestMarker/tree/master/Software.

D.2 Interface

The software’s main interface and clash list are show in Figure D.1 and Figure D.2,

respectively.

54

D.2 Interface

Figure D.1: Main interface of the test grader.

Figure D.2: Clash list interface of the test grader.

55

D.3 Templates

D.3 Templates

The original template is shown in Figure D.3. Two additional templates have also been

developed and implemented for the department. These templates provides the option

of grading numbered answered questions as well as multiple choice questions. These

templates are shown in Figure D.4 and Figure D.5.

56

D.3 Templates

Stellenbosch University: Applied Mathematics B154 Test /. /20 . . .

Surname : .

Enter your student number, both as numbers and
by filling in the ovals below the student number.

Give your answer for each question, both as
numbers and by filling in the corresponding oval
below each box.

Use only pen to colour the ovals.

. .
Student’s signature

US Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Question 1:

(a) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

(b) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Question 2:

(a) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

(b) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Figure D.3: Original template focussed on numbered answered questions.

57

D.3 Templates

Stellenbosch University: Applied Mathematics B154 Test /. /20 . . .

Surname : .

Enter your student number, both as numbers and
by filling in the ovals below the student number.

Question 1: Give your answer for each ques-
tion, both as numbers and by filling in the
corresponding oval below each box.
Question 2: Indicate your answer to each question
by filling in the appropriate oval.

Use only pen to colour the ovals.

. .
Student’s signature

US Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Question 1:

(a) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

(b) .
-
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Question 2:

A B C D E F

(a) (a)

(b) (b)

(c) (c)

(d) (d)

(e) (e)

(f) (f)

(g) (g)

(h) (h)

(i) (i)

(j) (j)

A B C D E F

(k) (k)

(l) (l)

(m) (m)

(n) (n)

(o) (o)

(p) (p)

(q) (q)

(r) (r)

(s) (s)

(t) (t)

Figure D.4: Template allowing for numbered and multiple choice answers.

58

D.3 Templates

Stellenbosch University: Applied Mathematics B154 Tut 9 2 October 2017

Surname : .

Enter your student number, both as numbers and
by filling in the ovals below the student number.

Indicate your answer to each question by filling in
the appropriate oval. Only fill one oval for each
question.

Make dark marks that fill the oval completely.

. .
Student’s signature

US Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

0 0

Section A:

A B C D E

(1) (1)

(2) (2)

(3) (3)

(4) (4)

(5) (5)

(6) (6)

(7) (7)

(8) (8)

(9) (9)

(10) (10)

(11) (11)

(12) (12)

(13) (13)

(14) (14)

(15) (15)

(16) (16)

(17) (17)

(18) (18)

(19) (19)

(20) (20)

(21) (21)

(22) (22)

(23) (23)

(24) (24)

(25) (25)

A B C D E

(26) (26)

(27) (27)

(28) (28)

(29) (29)

(30) (30)

(31) (31)

(32) (32)

(33) (33)

(34) (34)

(35) (35)

(36) (36)

(37) (37)

(38) (38)

(39) (39)

(40) (40)

(41) (41)

(42) (42)

(43) (43)

(44) (44)

(45) (45)

(46) (46)

(47) (47)

(48) (48)

(49) (49)

(50) (50)

Figure D.5: Template focussed solely on multiple choice type questions.

59

Appendix E

Validation and results

This appendix described additional test results obtained from experiments done on the

automatic test grading system.

E.1 All tutorial results

E.1.1 Overview

The automatic test grader developed in this study was successfully used to grade 11

tutorial test in 2017. The number of students per tutorial varies due to students having

valid excuses. On average 889 tests were written per tutorial. The results of these

tutorials can be seen in Table E.1 and Table E.2.

It is possible that there are tests with mistakes that was not reported. To calculate

the probability of this happening the 6th tutorial test was manually checked for mistakes.

None were found. Thus it is assumed that tests that have mistakes in, but is not reported,

are unlikely and is not incorporated into the calculations.

In the 11 tutorials an average of 99.3% of tests are estimated to be graded correctly,

as no corrections were made by students. This percentage is lower that expected, because

the basic system’s averages are also included. When only taking the complete grading

system’s result, an average of correctly grading tests are calculated to be 99.9%.

60

E.1 All tutorial results

Table E.1: Description of tutorial results.

Tutorial
number

Percentage tests
graded correctly

Reason for results

The basic system is now implemented.
Tutorial 1 98.4% (14 mistakes) The system has a problem

with identifying crossed-out
answers.

Tutorial 2 98.8% (11 mistake) The system still had a prob-
lem with crossed-out an-
swers. This problem was
subsequently resolved.

Tutorial 3 99.4% (5 mistakes) The system made a few
mistakes with answers with
only character information.

Tutorial 4 98.5% (13 mistakes) A rounding error in the soft-
ware led to some answers
being marked incorrectly.

Tutorial 5 99.3% (5 mistakes) The system made a few
mistakes with answers with
only character information.

Tutorial 6 99.7% (3 mistakes) Again the system made a
few mistakes with answers
with only character infor-
mation.

61

E.1 All tutorial results

Table E.2: Description of tutorial results.

Tutorial
number

Number of tests
graded incorrectly

Reason for results

The complete system, with machine learning, is now implemented.
Tutorial 7 99.9% (1 mistake) The system classified a

crossed-out answer as being
coloured in.

Tutorial 8 99.8% (2 mistakes) The system classified 2
crossed-out answers as be-
ing coloured in. This prob-
lem was subsequently re-
solved.

Tutorial 9 100.0% (0 mistakes) No mistakes where found.
Tutorial 10 99.9% (1 mistakes) This tutorial was discussed

in Chapter 5. The student
wrote over the negative sign
bubble, confusing the sys-
tem. This mistake is at-
tributed to the student.

Tutorial 11 100.0% (0 mistakes) No mistakes where found.

62

E.2 Deep Convolutional Neural Network results

E.2 Deep Convolutional Neural Network results

This section describes the results obtained on testing a trained neural network on a test

dataset. Tests are conducted on 3 neural networks trained on different datasets and

compared with each other. This testing process is conducted to find the neural network

weights that classifies written digits most accurately. The neural networks are tested on a

test dataset generated by grading 900 student tests and extracting the character images.

The answers from these tests was used to create labels for each digit image. Thus each

28 by 28 pixel digit image has an accompanied label specifying the digit. The dataset

contains 16 000 labelled images and is split into a training set of 11 000 digits and a

test set of 5 000 digits. An additional dataset, called the MNIST dataset, (Yann LeCun

& Burges, 1998), is also used in this process. This dataset contains 60 000 training set

digits and a test set of 10 000 digits. Each neural network is tested on both datasets.

Every network was trained for 8 hours on the same processor, before being tested. The

results of these test is shown in the next section.

E.2.1 Trained on generated database

In a first attempt at training a neural network the generated 11 000 digit training set

was used to train the network.

E.2.1.1 Accuracy of network

The test accuracy of the neural network on both test sets are given in Table E.3.

Table E.3: Test results for neural network trained on generated data.

Test dataset Percentage accuracy
MNIST dataset 94.62%
Generated dataset 92.16%

E.2.1.2 Conclusion on accuracy

The results are promising, but the average on the MNIST dataset is still too low. A

standard digit classifier has a MNIST testing accuracy of above 99%. A reason for this

accuracy is attributed to the small training set size of the generated dataset. The deep

63

E.2 Deep Convolutional Neural Network results

neural network thus does not have enough data to accurately model each digit and starts

to overfit on the data.

E.2.2 Trained on MNIST database

For the second neural network the MNIST dataset of 60 000 digit was used to train the

network.

E.2.2.1 Accuracy of network

The test accuracy of the neural network on both test sets are given in Table E.4.

Table E.4: Test results for neural network trained on MNIST dataset.

Test dataset Percentage accuracy
MNIST dataset 99.35%
Generated dataset 83.23%

E.2.2.2 Conclusion on accuracy

The resulting 83.23% in classifying the generated data is low. The reason for this low

accuracy is attributed to the MNIST dataset having only centred and normalized digits.

In the test grader example digits are sometimes written off-centre and are unnormalized.

The system mostly corrects for this, but there are cases where the digits cannot be

centred. This causes a few off-centred digits that the neural network is not trained to

classify.

E.2.3 Trained on mixed database

For the final neural network a combined dataset is used. The 11 000 training digits of

the generated dataset and the 60 000 training digits of the MNIST is combined to train

the model.

E.2.3.1 Accuracy of network

The test accuracy of the neural network on both test sets are given in Table E.5.

64

E.2 Deep Convolutional Neural Network results

Table E.5: Test results for neural network trained on combined data.

Test dataset Percentage accuracy
MNIST dataset 99.1%
Generated dataset 94.35%

E.2.3.2 Conclusion on accuracy

The best result is thus achieved by combining the two datasets. This 94.35% accuracy

is high enough for the neural network to provide useful information to the test grading

system. This neural network is used as the character recognition unit in the test grader.

65

	Abstract
	Uittreksel
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Problem background
	1.2 Problem statement
	1.3 Project scope and assumptions
	1.4 Project objectives
	1.5 Research methodology
	1.6 Graphical overview of system

	2 Literature study
	2.1 Existing Optical Marker Recognition techniques
	2.1.1 Standard Optical Marker Recognition systems
	2.1.1.1 Finding the template
	2.1.1.2 Processing a bubble

	2.2 Optical character recognition
	2.2.1 Probabilistic approach

	2.3 Conclusion: System requirements

	3 Image processing
	3.1 Orientation detection
	3.1.1 Initial filtering and orientation detection
	3.1.2 Radon transform
	3.1.3 Finding the template

	3.2 Bubble detection and processing
	3.3 Data processing and grading
	3.4 Conclusion

	4 Machine learning approach
	4.1 Character recognition using a neural network
	4.1.1 Preprocessing and creating digit images
	4.1.2 Classification of digits
	4.1.2.1 The Neural Network basics
	4.1.2.2 The artificial neuron
	4.1.2.3 Generating an output from the network
	4.1.2.4 Deep Convolutional Neural Network
	4.1.2.5 Training of the neural network

	4.2 Probabilistic Graphical Models
	4.2.1 Overview of the system
	4.2.2 Estimating the intended digit
	4.2.3 Estimating the student answer
	4.2.4 Estimating the student number
	4.2.5 Training of a Probabilistic Graphical Model

	4.3 Conclusion

	5 Analysis of results
	5.1 Results of 25 test cases
	5.1.1 Basic system
	5.1.1.1 Clash list
	5.1.1.2 Incorrect automatic graded results

	5.1.2 Complete system
	5.1.2.1 Clash list
	5.1.2.2 Incorrect automatic graded results

	5.1.3 Analysis of results

	5.2 Grading of tutorial tests
	5.2.1 Marking statistics
	5.2.2 Clash list
	5.2.3 Incorrect automatic graded results
	5.2.4 Conclusion

	6 Summary and conclusions
	6.1 Project summary
	6.2 How this final year project benefits society
	6.3 What the student learned
	6.4 Future improvements
	6.5 Summary and conclusions

	References
	A Project plan
	B Outcome compliance
	C Mathematical and graphical description of system
	C.1 High-level overview
	C.2 The student answer
	C.3 The intended digit
	C.4 The student number

	D Systems diagrams and software
	D.1 Software
	D.2 Interface
	D.3 Templates

	E Validation and results
	E.1 All tutorial results
	E.1.1 Overview

	E.2 Deep Convolutional Neural Network results
	E.2.1 Trained on generated database
	E.2.1.1 Accuracy of network
	E.2.1.2 Conclusion on accuracy

	E.2.2 Trained on MNIST database
	E.2.2.1 Accuracy of network
	E.2.2.2 Conclusion on accuracy

	E.2.3 Trained on mixed database
	E.2.3.1 Accuracy of network
	E.2.3.2 Conclusion on accuracy

